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Theoretical Analysis of a Ridged-Waveguide

Mounting Structure
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Abstract—The driving-point impedance of a single-gap thin con-

dnctor strip, a model of the ribbon-and-pedestal of diode package,
mounted across the gap of a ridged waveguide has been dierived rising

the induced EMF method. The dyadic Green’s function for the ridged

wavegnide is derived to facilitate the analysis. An equivalent circuit is
developed which involves an infinite array of transformers represent-
ing the conplings between the conductor strip and the wavegoide

normal modes. Nnmerical resnlts for atypical example are presented

to discnss the validity of the analytical results and also to demon-

strate a remarkably smooth behavior of the driving-point impedance

of the mount over a frequency range from 5.4 to 25.4 GHz

INTRODUCTION

Ridged waveguides have been used for many years in micro-

wave components and systems requiring broad bandwidths.

Among such applications, mounting structures for solid-state dev-

ices are of our interest here [1], including the fin-line components

[2]. A recent experimental investigation showed that mechanical

tuning ranges of 8.5-26 GHz and 14-28 GHz were achieved with

packaged Gunn and IMPATT diodes, respectively, mounted in

the ridged-waveguide cavities [3], [4]. This gave us a motivation to

study the ridged-waveguide mounting structure theoretically as

well. An attempt was made to extend the induced EI’vfF method,

which had been successfully applied to the rectangular waveguide

post-coupling structure [5], [6], to a ridged-waveguide mounting

structure where a packaged diode fitted into the gap spacing be-

tween the ridges extending uniformly in the z direction. In this

short paper we analyze a simplified model of the mount, in which

the package ceramic ring is disregarded and the ribbon-and-

pedestal of the diode is represented by an equivalent flat conduc-

tor strip, as in [5], [6], to derive its driving-point impedance.

ANALYSIS

A cross section of the ridged-waveguide mounting structure is

sketched in Fig. 1(a) and the model used in the analysis in Fig.

1(b) along with the coordinate system. The conductor strip with a

width w, a gap g, and an infinitesimal thickness at z = O is
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F]g. 1. A ridged-wavegmde mountmg structure. (a) A cross-sectional sketch of the

mount. (b) The model used in the analysis

regarded as a small antenna radiating into the ridged waveguide.

The electric field in the guide E(R) generated by the current den-

sity Y(R) in the conductor strip can be derived by

E(Z?) = –jcr)#o ( G(R/R) ~J(R/R) dv’ (1)
. “01

provided that the Green’s function, G(R/R’), is known. It is pos-

sible to derive G(R/R’) for the ridged waveguide using the Ohm–

Rayleigh method described by Tai in [7] with the aid of the

knowledge of the complete eigenfunctlons of the ridged waveguide

given by Montgomery in [8]. Quoting from [8], we can write for

the y component of the electric basis field in region 1, referring to

Fig. l(b), as

for TE modes and

for TM modes where k.,. is defined by

with

(4)

(5)

and k= o]=.

In the above expressions, we adopted the convention

exp (jrot – jrz) for the wave propagating in the positive z direc-

tion and the subscripts Ii and E for the TE and the TM modes,

respectively. In (2) and (3) we retained only those modes which

satisfy the magnetic-wall-boundary condition at the symmetry

plane of the waveguide since the current is centered at this plane.

In (4), k~ is an eigenvalue and kxln is the propagation constant in

the x direction of the spatial harmonic component in region 1

associated with the eigenvalue. The amplitudes of these spatial
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harmonic components are ql. and ~ ~.. Values of k~, VI., and <I.

are determined by the method described in [8].

Results of the derivation give

-Gyy(R/R’)=j~ fexp(-~;;jz -z’1)(~1nkX1n)2
k~tr .=0

coskX.nx coskX.nx’cos:(y–bJ

. cos:(y’–b~)

@Jr.exp(–jrElz–z’l) ~1~~ 2
+j~~

km n=l 2k2 () b3

. COS k.lnx COS k.lnx’ COS ;(Y – b3)

“ Cos :(Y’ – b3) (6)

for the yy component of the dyadic Green’s function which repre-

sents the total coupling between the y-pointed current and the

ridged waveguide.

Equation (6) suggests that it is appropriate to write the current

density in a form

J(R) =
1

jdo ~ .4ncos:(y -b3)6(z-0), +X+
.=0

o, otherwise

(7)

where ~ is the y-pointed unit vector and An are unknown ampli-

tudes of the spatial harmonic components of the current density in

the conductor strip.

Then, we assume a uniform voltage V across the gap since the

gap is very small. The gap field, E,,P(R), can be written as

Ega,(l?) = –j ; U(x)u(y)o(z) (8)

where

11,
u(x) =

( arbitrary, otherwise

{
1,

v(y) =

(o, along the conductor strip

{
1+) = 1> Z=()

arbitrary, Z+o,

Applying the Lorentz reciprocity theorem to J(R), E(R), and

,?&(lt), we have

]Vo,‘(R)“ ‘w,(~) au= ( J(R) ~E(I?) dv,. “01
(9)

From (9) we can obtain an expression for the driving-point im-

pedance Z~ of the mount defined by Z~ = V/I where I is the total

current in the conductor strip using the procedure described in

[6]. Results can be written as

(lo)

where

with

and
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F]g. 2. An equivalent cirmnt of Zn,

(11)

(12)

(13)

(14)

(15)

(16)

(17)

In (I 1), r~, and r~~ are the propagation constants associated with

the pth and the qth lowest order eigenvalues of TE and TM
modes, respectively. The factor KY is the gap coupfing factor.

Similarly, K,Hnp and K,Enq are the conductor-strip coupling fac-

tors for the TE and the TM modes, respectively.

Equation (11 ) can readily be represented by an equivalent cir-

cuit as shown in Fig. 2. In view of (10), a parallel connection of Z.

as shown in Fig. 3 gives an equivalent circuit of the driving-point

impedance Z~. Notice that each spatial harmonic component of J
couples with all the waveguide modes. This is the consequence of

the presence of the ridges in otherwise rectangular waveguide. The

equivalent circuit of Fig. 3 reduces, as it should, to the one

developed by Eisenhart and Khan in [6] for the rectangular wave-

guide post-coupling structure when b ~ ~ b~ and bz + O, referring

to Fig. l(b).
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Flg 3, An equwalent cmcuit oft he dnvmg-pomt ]mpedance Z, of the ndged-wave-

gu]de mountnrg structure,

TABLE I
RIGID WAVEGUIDE CHARACTERISTICS

Mode : Cutof[ Ireq. : ?.,,

TE1O-hybr’lcf : 5.4 (;113 : 1 2[1 01)111

TE, n- troug.h : 19.2 l;llz : -—

TE. O- hybrld : 21,7 ~i!Z : —
—-

TE<n - hybrid : 25.4 GIlz

TM1l
-trough : 31 ..1 Cllz : —

(Waveguide dimensions are: al = 1.75 mm, a, = 7.90 mm, b, = 4.85 mm,
b, = 3.05 mm, and b3 = 1.80 mm)

(090nHl

““3

400 -R (O 03PF) Z>o Z<o

: Zm=Rm+iXR Z&=R~+JX~ (I OGHZ)

:
J! R* — f3~o..

I
w= loo mm

;: xi+ --- Xkxxx 9.050 mm

200 !.; Fig. 5. A slmphfied equivalent clrcult of the driving-point impedance 2~. L = 0.90

nH and C = 0.03 pF evaluated at 10 GHz, Z,lo = Z,m (,1,/~) = 120(1~/A).

1
1

ohms ~ 1
i *.x.. -x--*

.**
TElo-hybrid mode propagates while all other modes evanesce,I

o ; ,~ 1 [ 1 making ZHI resistive, Z~P (p > 2) inductive, and Z~q (q 2 1)capa-
,( 10 20 I
II

~ 30
FREOUENCY (GHZ) 1

I ,--, citive at frequencies from 5.4 to 25.4 GHz. The branch impedance
/;

- Ii
1;’. for n = O, Zo, is given by a series connection of a resistance RR and

@ ~; ‘\\ x
,1

1

\ an inductance L.. From (11) through (13), we have
;; \\

-200 - 1: \

( )–

K~HO~ 2 cofil)
= ;2.10Fig, 4. Frequency characteristics of the real and lmagmary parts of Z~ = RR + JXR

RR= —
Kgo r“l

(18)

and Z~ = RR + jXK Sotrd curve: R ~; broken curve: X~: circles: RR, crosses: X\

AN EXAMPLE

A typical example is worked out in this section for a conductor

strip with g = 0.5 mm, h = b~ /2 = 0.90 mm, and w = 1.00 mm

mounted in a ridged waveguide with al = 1.75 mm, az = 7.90

mm, bl = 4.85 mm, bz = 3.05 mm, and b~ = 1.80 mm. The cutoff

frequencies of the lowest five modes and the characteristic im-

pedance of the dominant TElo-hybrid mode are listed in Table I.

Numerical evaluation of the driving-point impedance Z~ re-

quires truncation of the summations in (10) and (11) with respect

to both n and the number of eigenvalues. In our present example

we choose somewhat arbitrarily, but using the discussion given in

[6] as a guide, n s 4 andfi <300 GHz. Results of such calculation

are presented in Fig. 4, where the solid and broken curves repre-

sent the real and imaginary parts of the driving-point impedance,

Z~ = RR + jX~, respectively. These curves show a remarkably

smooth behavior of the driving-point impedance over a range of
frequencies from 5.4 to 25.4 GHz, indicating that the ridged-

waveguide mounting structure is suitable for wide-band

applications.

Of the lowest five modes of the waveguide listed in Table I, only

the TE ~o- and TE30-hybrid modes couple with the current J,

because of the waveguide symmetry and our choice of h = b~ /2

which makes 2. = m for n = 1, 3, 5, . . . . Thus only the
.

where

(19)

is the characteristic impedance of the TE ~O-hybrid mode. For the

higher order spatial harmonics, n >1, numerical results show that

k,H. ~ = O owing to small values of q ~h. In addition, the capacitive

reactance dominates over the inductive reactance in each branch

impedance 2. (n > 1) over most of the range of frequencies of

interest. Exceptions occur when the frequency of operation

approaches any of the cutoff frequencies of the higher order

modes; Z. approaches a.series resonance. This is reflected in Fig.

4. At frequencies reasonably ~emoved from the cutoff frequencies,

the net effect of Z. (n > 1) can be accounted for by a single capaci-

tance shunting across the driving-point terminals. Therefore, the

equivalent circuit of Fig. 3 reduces to a simple one given in Fig. 5.

Values of L and C evaluated at 10 GHz are 0.90 nH and 0.03 pF,

respectively, for our present example.

Using these values and (19), we can calculate the driving-point
impedance of the circuit of Fig. 5, ZR = RR + jXk, and the results

are represented by the circles and the crosses m Fig. 4. Compari-

son of Z’R with Zjr justifies the use of the simplified equivalent

circuit in practical designs and analyses of the circuits and at the

same time points out its limitation.

With regard to the convergence properties of the summations in

(10) and (11), we consider that the fundamental aspects of the
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Fig. 6 The conductor strip inductance versus the strip width The inductance n

evaluated by truncating the series at 75.5 GHz through 300 GHz with respect to

the elgenvalues and holding n <4 with respect to the spatial harmomcs Ordinate:

inductance L, m rrmrohenrles Abscissa: strip width w, in mdhmeters

discussions given in [6] would apply to our problem, and that the

series converges for finite w and g. However, our study is incom-

plete at the time of this writing, and our approach here is to

calculate the values of the inductance at various values of the strip

width w, using different numbers of the eigenvalues while holding

n <4 as a test of convergence. A typical set of results are pre-

sented in Fig. 6, where all the relevant eigenvalues up to 75.5 GHz

through 300 GHz that were detected by a numerical method of

scanning on the computer were used. Since the numerical method

of scanning has the possibility of leaving out some eigenvalues

undetected, precaution is required to include most of the eigen-

values, particularly those of the lower order modes. This is done

by checking the number of the eigenvalues detected against that

estimated for the through region rectangular waveguide and also

by identifying the modes for some twenty lowest order modes.

Fig. 6 shows that truncation at about 300 GHz is acceptable for

w >1.00 mm. As the width decreases, an increasingly large

number of eigenvalues will be required for precision analysis.

CONCLUSIONS

A simplified model of the ridged-waveguide mounting structure

has been analyzed theoretically. The ribbon-and-pedestal of the

microwave diode was represented by an equivalent flat conductor

strip having an equivalent width, an infinitesimal thickness, and a

gap. The conductor strip was regarded as a small antenna and its

driving-point impedance was derived using the induced EMF

method. The dyadic Green’s function for the ridged waveguide

was also derived to facilitate the analysis. The results of the

analysis were represented by an equivalent circuit that involved

infinite array of transformers representing the couplings between

the spatial harmonic components of the current in the conductor

strip and the waveguide normal modes. The equivalent circuit was

reduced to a simple one convenient for use in practical designs

and analyses of microwave circuits involving the mount of this

type. Numerical results for a typical example were given to discuss

the validity of the theoretical results and also to demonstrate a

remarkably smooth behavior of the driving-point impedance of

the mount over a frequency range from 5.4 to 25.4 GHz.

The neglect of the package ceramic ring and the lack of theo-

retical procedure of defining the equivalent width of the flat con-

ductor strip were major shortcomings of the analysis.

Experimental measurements were required to supplement these

aspects. A through discussion on the convergence properties of

the summation was also left for future study. However, the results

presented in this short paper will be useful for designs and

analyses of various microwave components and circuits involving

small devices such as Gunn and IMPATT diodes as well as for

characterizat~on of these devices over a wide range of frequencies.
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Application of Gratings in a Dielectric Waveguide

for Leaky-Wave Antennas and Band-Reject Filters

TATSUO ITOH, SENIOR MEMBER, IEEE

Abstract-Grating structures fabricated in inverted-strip dielec-

tric waveguides have been used for tbe first time as leaky-wave
antennas and band-reject filters. They are potentially useful for

millimeter-wave integrated circuits. Experimental results agree
reasonably well with theoretical predictions.

I. INTRODUCTION

Grating structures are commonly employed in optics as beam

couplers [1] and as frequency-sensitive reflectors for dktributed-

feedback lasers [2]. However, such gratings have not yet been

widely used al. millimeter wavelengths. Since dielectric waveguides

in millimeter-wave integrated circuits (MMIC) are low-frequency

replicas of optical waveguide, it is clear that many techniques

could be transferred from the optical to the millimeter-wave

domain.

This paper reports the first reduction to practice of a frequencY-
scannable leaky-wave antenna and a band-reject filter made of

grating structures implemented in the inverted-strip (IS) dielectric

waveguide [3], [4]. The antenna and filter are compatible with,

and naturally complement, the directional couplers, oscillators,

and phase shifters that have already been developed using dielec-

tric waveguide fabrication techniques [3]–[7]. Grating structures

can be easily and economically fabricated in the IS guide. The

performance of the antenna and the filter made of gratings can be

optimized in a relatively easy and flexible manner. Hence, the

development of these devices is likely to contribute to realization
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